top of page
Search
  • Writer's pictureStaci-lee Sherwood

Prescribed burning: 'A Bad Prescription for What Ails Our Wilderness Landscape'

Updated: Feb 25, 2022


family band of wild horses symbiotically maintains wildfire fuels creating a natural fire-break in a forest, preventing what we see in the right-half of this image. Image: William E. Simpson II


By: William E. Simpson II *Guest Writer*



Peak wildfire season is now just a few months away. And if the truth was being told, our government agencies and public land managers have no better plan for preventing wildfires than before... Their solution?

Prescribed burning is a polluting, dangerous and cost-ineffective workaround for addressing the annually renewed key grass and brush fuels...

1) Prescribed burning puts even more toxic smoke, carbon compounds and greenhouse gases into the atmosphere and robs us of clean air.

2) Prescribed burning can only address a tiny percentage of the total landscape (tens of millions of acres) that needs to have grass and brush-maintained year-round. Herbivores (wild horses, deer, elk) can do that work daily all-year-round, cost-effectively.

3) Prescribed burns are not necessarily timely: Many times, areas that are over-grown with grass and brush catch fire before any prescribed burn is used... and again, we have tens of millions of acres of area in just CA and OR filled with annual grass and brush fuels!

4) Prescribed burns have a way of becoming Wildfires! We have seen many accounts of so-called prescribed burns turning into deadly wildfires... with the loss of life, homes by the hundreds and devastation of the landscape and wildlife.

5) Prescribed burns remove native cover crops and exposes soils to catastrophic erosion, which in turn adversely impacts watersheds and the aquifer (instead of infiltrating the soils, water quickly runs off naked ground. Furthermore, the spawning beds in streams and rivers used by trout and salmon are also silted-in by the erosion caused by loss of ground cover due to prescribed burns and wildfires.


6) Biomass and its uses listen-well. However, when we put a critical eye on that paradigm, we quickly find that it sounds much better than it actually is.

Much of the western landscape terrain (area) that would allow any such expensive techniques and required equipment is extremely limited in area. The intense soils disruption caused by the heavy equipment used for biomass recovery, which includes logging-off burned trees, adds insult to injury on lands that have suffered wildfires.

Access to tens of millions of acres in OR and CA is extremely difficult due to rugged terrain. These are areas where in many cases, smoke-jumpers must parachute-in to attempt to fight wildfire, at grave risk to such personnel.

Moreover, in 'designated wilderness' areas, using any motorized vehicles and equipment are prohibited by law. This means there is about 110-million acres of 'designated wilderness' in the western U.S. where cost-ineffective biomass methods are prohibited by law, and virtually impractical due to remote, steep and rocky terrain.


So, the idea of using large gas and diesel-powered machines to harvest biomass and trucks to transport it all, is limited to a tiny fraction of the landscape due to remote, rocky and steep terrain.

And biomass equipment burns fossil fuels and the resulting biomass products export carbon to other uses, some of which do not sequester carbon... like wood stove pellets, which send carbon compounds into the atmosphere.

Reestablishing the Herbivory: Native species grazing (deer and wild horses) is the only ecologically and cost-effective method for reducing and maintaining grass and brush wildfire fuels in remote wilderness areas year-round.

Our now-depleted native herbivores (deer, wild horses, bison) had been maintaining grass and brush fuels to nominal levels in prior decades. California alone is down about 2-million deer over the past 5-decades, and those now-missing deer had been reducing wildfire fuels (grass and brush) across the landscape at the rate of nearly 3-million tons per year.

3) Prescribed burning year after year permanently damages the soils, as we read in this published Study about low-intensity burns:

The current institutional response: 'Give us even more money' will merely result in continuation of the currently proven ineffective methods, and then after wildfires have started, even more money will be spent on suppression.


A Metaphor:

Imagine being the captain and crew of a large passenger carrying ship that has a hole in the hull of the ship... a hole in the boat.

And so, if in this metaphor we used the same strategy and policies as we are hearing from some of our so-called leaders and 'experts', we would be arguing about how many and what kind of bilge pumps we should be deploying in the boat.

When in reality, the discussion should be about repairing the hole in our boat....

What we are seeing in the debate on wildfires is simple: Money creating narratives... instead of logic that protects public health, safety and welfare of Americans and their natural resources.

QUESTION: Is logic no longer important in regard to public land and wildfire management?

Is flawed institutional dogma now overshadowing genuine science and what is in highest and best interests of Americans and their public lands, forests, wildlife and water resources?

FACT: Where there is no fuel, there cannot be fire; regardless of planetary temperatures, and that is an immutable fact of science.

FACT: Where fuels are reduced by native herbivore grazing, the heat (intensity) of wildfire is also reduced as well as the frequency of wildfire. Less fuel equals, less heat, and that results in less damage to the landscape and fire-evolved conifers.

A preponderance of scientific studies coupled with empirical experience now prove that by reducing fuels, especially grass and brush fuels, we can reduce both the frequency and intensity of catastrophic wildfire

(See 'References' herein below)

FACT: According to wildfire forensics reported for hundreds of wildfires at InciWeb, the predominant fuel in a majority of western wildfires is grass and brush, which is now overgrown virtually everywhere in western states due to the collapse of the populations of our native species herbivore-grazers, a problem made much worse by people positing so-called solutions that dance-around the root cause of catastrophic wildfires without addressing that root cause.

Root Causation of Catastrophic Wildfire:

Science proves that the key grass and brush fuels are no longer controlled and maintained by the native species herbivores in the western U.S. because their populations have collapsed due to mismanagement. (See References Below)


California alone is down nearly 2-million deer (or more since hundreds of recent wildfires).

Those now-missing deer were cost-effectively reducing and maintaining annually occurring grass and brush fuels at the rate of nearly 3-million tons each year... maintaining these key fuels to nominal levels.

Money creates narratives, including influencing opinions among scientists and land managers, that are contraindicated to the health, safety and welfare of American citizens, and which are also increasing tax burdens on American taxpayers. Money driven narratives that drive policy also tend to compromise what's best for the environment and wilderness ecosystems. This must end.

Many designated wilderness areas are manifestly unsuited for wildfire grazing by invasive species cattle and sheep because of their ruminant digestive systems, which digest all the seeds of native north American plants and grasses that they eat, ending any re-seeding.

Ultimately, this kills-off native vegetation providing opportunities thereafter for invasive species plants and increases erosion that damages fisheries. This also causes great ecological damage to wilderness landscapes, especially wilderness areas with threatened and endangered flora that have co-evolved dependent fauna (birds, mammals, insects, etc.) that require certain species of plants and grasses for their survival.

Added to this issue is also the fact that many designated wilderness areas are unsuited economically for cattle and sheep due to intact apex predator populations as well as remote and difficult terrain where motorized vehicles and equipment are prohibited by law.

Interestingly, native species American wild horses don't digest most of the seeds they eat, and most seeds of native plants and grasses are re-deposited back onto the ground in their scat. Horse scat is also rich in humus and microbiome that gives the seeds that are incorporated therein a huge advantage for survival over seeds scattered by birds, small mammals or the wind.

Before your community burns, take the time to read the response I have provided to a former deputy director at the USFS, who is now promoting monetizing biomass from our forests along with other methods that fail to address the root cause of evolved wildfires today. Biomass harvesting is no solution for the grass and brush fueled wildfires that are widely distributed across 300-million acres of wilderness in the western United States, nor within the 110-million acres of 'designated wilderness' that have delicate ecosystems that would be destroyed by the equipment required to harvest woody materials in wilderness areas.

Using expensive, polluting and risky prescribed burning at any level to attempt to replace what Nature does so eloquently and so cost-effectively with native species herbivores, showcases flawed thinking behind adding more fire to the landscape and toxic smoke to our atmosphere, and totally fails to address the root cause of catastrophic wildfire.


About the Author:

William E. Simpson II is an ethologist living among and studying free-roaming native species American wild horses. William is the award-winning producer of the micro-documentary film 'Wild Horses'. He is the author of a new Study about the behavioral ecology of wild horses, two published books and more than 150 published articles on subjects related to wild horses, wildlife, wildfire, and public land (forest) management. He has appeared on NBC NEWS, ABC NEWS, theDoveTV and has been a guest on numerous talk radio shows including the Lars Larson Show, the Bill Meyer Show, and on NPR Jefferson Public Radio.



References:

1. Collapse of the world’s largest herbivores: "By altering the quantity and distribution of fuel supplies, large herbivores can shape the frequency, intensity, and spatial distribution of fires across a landscape”. William J. Ripple. Et. Al. http://advances.sciencemag.org/content/1/4/e1400103.full 2. Rewilding: Jozef Keulartz. "The removal of large herbivores has adverse effects on landscape structure and ecosystem functioning. In wetter ecosystems, the loss of large herbivores is associated with an increased abundance of woody plants and the development of a closed-canopy vegetation. In drier ecosystems, reductions of large grazers can lead to a high grass biomass, and thus, to an increase in the frequency and intensity of wildfires. Together, with the loss of a prey base for large carnivores, these changes in vegetation structures and fire regimes may trigger cascades of extinctions (Bakker et al., 2016; Estes et al., 2011; Hopcraft, Olff, & Sinclair, 2009; Malhi et al., 2016)." http://oxfordre.com/environmentalscience/view/10.1093/acrefore/9780199389414.001.0001/acrefore-9780199389414-e-545 3. Effects of large herbivores on fire regimes and wildfire mitigation. Julia Rouet-Leduc, Guy Pe'er, Francisco Moreira, Aletta Bonn, Wouter Helmer, Shahin A. A. Shahsavan Zadeh, Alexander Zizka, Fons van der Plas https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/1365-2664.13972 4. Global response of fire activity to late Quaternary grazer extinctions. Allison T. Karp J. Tyler Faith Jennifer R. Marlon and A. Carla Staver 5. G. R. van der Werf, J. T. Randerson, L. Giglio, T. T. van Leeuwen, Y. Chen, B. M. Rogers, M. Mu, M. J. E. van Marle, D. C. Morton, G. J. Collatz, R. J. Yokelson, P. S. Kasibhatla, Global fire emissions estimates during 1997-2016. Earth Syst. Sci. Data 9, 697–720 (2017). 6. S. Archibald, C. E. R. Lehmann, C. M. Belcher, W. J. Bond, R. A. Bradstock, A.-L. Daniau, K. G. Dexter, E. J. Forrestel, M. Greve, T. He, S. I. Higgins, W. A. Hoffmann, B. B. Lamont, D. J. McGlinn, G. R. Moncrieff, C. P. Osborne, J. G. Pausas, O. Price, B. S. Ripley, B. M. Rogers, D. W. Schwilk, M. F. Simon, M. R. Turetsky, G. R. Van der Werf, A. E. Zanne, Biological and geophysical feedbacks with fire in the Earth system. Environ. Res. Lett. 13, 033003 (2018). 7. C. N. Johnson, L. D. Prior, S. Archibald, H. M. Poulos, A. M. Barton, G. J. Williamson, D. M. J. S. Bowman, Can trophic rewilding reduce the impact of fire in a more flammable world? Phil. Trans. R. Soc. B 373, 20170443 (2018). 8. S. Archibald, G. P. Hempson, Competing consumers: Contrasting the patterns and impacts of fire and mammalian herbivory in Africa. Phil. Trans. R. Soc. B 371, 20150309 (2016). 9. A. C. Staver, J. O. Abraham, G. P. Hempson, A. T. Karp, J. T. Faith, The past, present, and future of herbivore impacts on savanna vegetation. J. Ecol. 109, 2804–2822 (2021). 10.G. K. Charles, L. M. Porensky, C. Riginos, K. E. Veblen, T. P. Young, Herbivore effects on productivity vary by guild: Cattle increase mean productivity while wildlife reduce variability. Ecol. Appl. 27, 143–155 (2017). 11.G. P. Hempson, S. Archibald, W. J. Bond, A continent-wide assessment of the form and intensity of large mammal herbivory in Africa. Science 350, 1056–1061 (2015). 12.S. Jia, X. Wang, Z. Yuan, F. Lin, J. Ye, Z. Hao, M. S. Luskin, Global signal of top-down control of terrestrial plant communities by herbivores. Proc. Natl. Acad. Sci. U.S.A. 115, 6237–6242 (2018). 13.M. S. Waldram, W. J. Bond, W. D. Stock, Ecological engineering by a mega-grazer: White Rhino impacts on a south African savanna. Ecosystems 11, 101–112 (2008). 14.S. J. McNaughton, Grazing Lawns: Animals in Herds, Plant Form, and Coevolution. Am. Nat. 124, 863–886 (1984). 15.E. S. Forbes, J. H. Cushman, D. E. Burkepile, T. P. Young, M. Klope, H. S. Young, Synthesizing the effects of large, wild herbivore exclusion on ecosystem function. Funct. Ecol. 33, 1597–1610 (2019). 16.E. S. Bakker, J. L. Gill, C. N. Johnson, F. W. M. Vera, C. J. Sandom, G. P. Asner, J.-C. Svenning, Combining paleo-data and modern exclosure experiments to assess the impact of megafauna extinctions on woody vegetation. Proc. Natl. Acad. Sci. U.S.A. 113, 847–855 (2016). 17.G. P. Hempson, S. Archibald, W. J. Bond, The consequences of replacing wildlife with livestock in Africa. Sci. Rep. 7, 17196 (2017). 18.S. E. Koerner, M. D. Smith, D. E. Burkepile, N. P. Hanan, M. L. Avolio, S. L. Collins, A. K. Knapp, N. P. Lemoine, E. J. Forrestel, S. Eby, D. I. Thompson, G. A. Aguado-Santacruz, J. P. Anderson, T. M. Anderson, A. Angassa, S. Bagchi, E. S. Bakker, G. Bastin, L. E. Baur, K. H. Beard, E. A. Beever, P. J. Bohlen, E. H. Boughton, D. Canestro, A. Cesa, E. Chaneton, J. Cheng, C. M. D’Antonio, C. Deleglise, F. Dembélé, J. Dorrough, D. J. Eldridge, B. Fernandez-Going, S. Fernández-Lugo, L. H. Fraser, B. Freedman, G. García-Salgado, J. R. Goheen, L. Guo, S. Husheer, M. Karembé, J. M. H. Knops, T. Kraaij, A. Kulmatiski, M.-M. Kytöviita, F. Lezama, G. Loucougaray, A. Loydi, D. G. Milchunas, S. J. Milton, J. W. Morgan, C. Moxham, K. C. Nehring, H. Olff, T. M. Palmer, S. Rebollo, C. Riginos, A. C. Risch, M. Rueda, M. Sankaran, T. Sasaki, K. A. Schoenecker, N. L. Schultz, M. Schütz, A. Schwabe, F. Siebert, C. Smit, K. A. Stahlheber, C. Storm, D. J. Strong, J. Su, Y. V. Tiruvaimozhi, C. Tyler, J. Val, M. L. Vandegehuchte, K. E. Veblen, L. T. Vermeire, D. Ward, J. Wu, T. P. Young, Q. Yu, T. J. Zelikova, Change in dominance determines herbivore effects on plant biodiversity. Nat. Ecol. Evol. 2, 1925–1932 (2018). 19.J. Rowan, J. T. Faith, in The Ecology of Browsing and Grazing II, I. J. Gordon, H. H. T. Prins, Eds. (Springer, 2019), pp. 61–79. 20.E. J. Lundgren, D. Ramp, J. Rowan, O. Middleton, S. D. Schowanek, O. Sanisidro, S. P. Carroll, M. Davis, C. J. Sandom, J.-C. Svenning, A. D. Wallach, Introduced herbivores restore Late Pleistocene ecological functions. Proc. Natl. Acad. Sci. U.S.A. 117, 7871–7878 (2020). 21.A. W. Illius, I. J. Gordon, Modelling the nutritional ecology of ungulate herbivores: Evolution of body size and competitive interactions. Oecologia 89, 428–434 (1992). 22.J. L. Gill, J. W. Williams, S. T. Jackson, K. B. Lininger, G. S. Robinson, Pleistocene megafaunal collapse, novel plant communities, and enhanced fire regimes in North America. Science 326, 1100–1103 (2009). 23.G. S. Robinson, L. P. Burney, D. A. Burney, Landscape paleoecology and megafaunal extinction in southeastern New York State. Ecol. Monogr. 75, 295–315 (2005). 24.D. A. Burney, G. S. Robinson, L. P. Burney, Sporormiella and the late Holocene extinctions in Madagascar. Proc. Natl. Acad. Sci. U.S.A. 100, 10800–10805 (2003). 25.S. Rule, B. W. Brook, S. G. Haberle, C. S. M. Turney, A. P. Kershaw, C. N. Johnson, The aftermath of megafaunal extinction: Ecosystem transformation in Pleistocene Australia. Science 335, 1483–1486 (2012). 26.S. D. Schowanek, M. Davis, E. J. Lundgren, O. Middleton, J. Rowan, R. Ø. Pedersen, D. Ramp, C. J. Sandom, J.-C. Svenning, Reintroducing extirpated herbivores could partially reverse the late Quaternary decline of large and grazing species. Glob. Ecol. Biogeogr. 30, 896–908 (2021). 27.E. J. Lundgren, S. D. Schowanek, J. Rowan, O. Middleton, R. Ø. Pedersen, A. D. Wallach, D. Ramp, M. Davis, C. J. Sandom, J.-C. Svenning, Functional traits of the world’s late Quaternary large-bodied avian and mammalian herbivores. Sci. Data 8, 17 (2021). 28.J. R. Marlon, R. Kelly, A.-L. Daniau, B. Vannière, M. J. Power, P. Bartlein, P. Higuera, O. Blarquez, S. Brewer, T. Brücher, A. Feurdean, G. G. Romera, V. Iglesias, S. Y. Maezumi, B. Magi, C. J. Courtney Mustaphi, T. Zhihai, Reconstructions of biomass burning from sediment-charcoal records to improve data-model comparisons. Biogeosciences 13, 3225–3244 (2016). 29.B. J. Enquist, A. J. Abraham, M. B. J. Harfoot, Y. Malhi, C. E. Doughty, The megabiota are disproportionately important for biosphere functioning. Nat. Commun. 11, 699 (2020). 30.A. L. Daniau, P. J. Bartlein, S. P. Harrison, I. C. Prentice, S. Brewer, P. Friedlingstein, T. I. Harrison-Prentice, J. Inoue, K. Izumi, J. R. Marlon, S. Mooney, M. J. Power, J. Stevenson, W. Tinner, M. Andrič, J. Atanassova, H. Behling, M. Black, O. Blarquez, K. J. Brown, C. Carcaillet, E. A. Colhoun, D. Colombaroli, B. A. S. Davis, D. D’Costa, J. Dodson, L. Dupont, Z. Eshetu, D. G. Gavin, A. Genries, S. Haberle, D. J. Hallett, G. Hope, S. P. Horn, T. G. Kassa, F. Katamura, L. M. Kennedy, P. Kershaw, S. Krivonogov, C. Long, D. Magri, E. Marinova, G. M. McKenzie, P. I. Moreno, P. Moss, F. H. Neumann, E. Norström, C. Paitre, D. Rius, N. Roberts, G. S. Robinson, N. Sasaki, L. Scott, H. Takahara, V. Terwilliger, F. Thevenon, R. Turner, V. G. Valsecchi, B. Vannière, M. Walsh, N. Williams, Y. Zhang, Predictability of biomass burning in response to climate changes. Global Biogeochem. Cycles 26, GB4007 (2012). 31.J. R. Marlon, P. J. Bartlein, M. K. Walsh, S. P. Harrison, K. J. Brown, M. E. Edwards, P. E. Higuera, M. J. Power, R. S. Anderson, C. Briles, A. Brunelle, C. Carcaillet, M. Daniels, F. S. Hu, M. Lavoie, C. Long, T. Minckley, P. J. H. Richard, A. C. Scott, D. S. Shafer, W. Tinner, C. E. Umbanhowar Jr., C. Whitlock, Wildfire responses to abrupt climate change in North America. Proc. Natl. Acad. Sci. U.S.A. 106, 2519–2524 (2009). 32.A.-L. Daniau, M. F. Sánchez Goñi, P. Martinez, D. H. Urrego, V. Bout-Roumazeilles, S. Desprat, J. R. Marlon, Orbital-scale climate forcing of grassland burning in southern Africa. Proc. Natl. Acad. Sci. U.S.A. 110, 5069–5073 (2013). 33.S. L. Cocker, M. F. J. Pisaric, F. M. G. McCarthy, J. C. Vermaire, P. Beaupre, L. C. Cwynar, Dung analysis of the East Milford mastodons: Dietary and environmental reconstructions from central Nova Scotia at ~75 ka yr BP. Can. J. Earth Sci. 58, 1059–1072 (2021). 34.M. A. Krawchuk, M. A. Moritz, Constraints on global fire activity vary across a resource gradient. Ecology 92, 121–132 (2011). 35.T. Andermann, S. Faurby, S. T. Turvey, A. Antonelli, D. Silvestro, The past and future human impact on mammalian diversity. Sci. Adv. 6, eabb2313 (2020). 36.C. N. Johnson, Fire, people and ecosystem change in Pleistocene Australia. Aust. J. Bot. 64, 643–651 (2016). 37.W. J. Ripple, T. M. Newsome, C. Wolf, R. Dirzo, K. T. Everatt, M. Galetti, M. W. Hayward, G. I. H. Kerley, T. Levi, P. A. Lindsey, D. W. Macdonald, Y. Malhi, L. E. Painter, C. J. Sandom, J. Terborgh, B. Van Valkenburgh, Collapse of the world’s largest herbivores. Sci. Adv. 1, e1400103 (2015). 38.A. Pachzelt, M. Forrest, A. Rammig, S. I. Higgins, T. Hickler, Potential impact of large ungulate grazers on African vegetation, carbon storage and fire regimes. Glob. Ecol. Biogeogr. 24, 991–1002 (2015). 39.N. Andela, D. C. Morton, L. Giglio, Y. Chen, G. R. van der Werf, P. S. Kasibhatla, R. S. DeFries, G. J. Collatz, S. Hantson, S. Kloster, D. Bachelet, M. Forrest, G. Lasslop, F. Li, S. Mangeon, J. R. Melton, C. Yue, J. T. Randerson, A human-driven decline in global burned area. Science 356, 1356–1362 (2017). 40.C. E. Cordova, W. C. Johnson, An 18 ka to present pollen- and phytolith-based vegetation reconstruction from Hall’s Cave, south-central Texas, USA. Quat. Res. 92, 497–518 (2019). 41.D. M. Nelson, M. A. Urban, A. P. Kershaw, F. S. Hu, Late-Quaternary variation in C3 and C4 grass abundance in southeastern Australia as inferred from δ13C analysis: Assessing the roles of climate, pCO2, and fire. Quat. Sci. Rev. 139, 67–76 (2016). 42.P. T. Moss, G. B. Dunbar, Z. Thomas, C. Turney, A. P. Kershaw, G. E. Jacobsen, A 60000-year record of environmental change for the Wet Tropics of north-eastern Australia based on the ODP 820 marine core. J. Quaternary Sci. 32, 704–716 (2017). 43.A. P. Kershaw, G. M. McKenzie, N. Porch, R. G. Roberts, J. Brown, H. Heijnis, M. L. Orr, G. Jacobsen, P. R. Newall, A high-resolution record of vegetation and climate through the last glacial cycle from Caledonia Fen, southeastern highlands of Australia. J. Quaternary Sci. 22, 481–500 (2007). 44.R. A. Lopes dos Santos, P. De Deckker, E. C. Hopmans, J. W. Magee, A. Mets, J. S. Sinninghe Damsté, S. Schouten, Abrupt vegetation change after the Late Quaternary megafaunal extinction in southeastern Australia. Nat. Geosci. 6, 627–631 (2013). 45.B. Hermanowski, M. L. da Costa, H. Behling, Environmental changes in southeastern Amazonia during the last 25,000 yr revealed from a paleoecological record. Quat. Res. 77, 138–148 (2012). 46.B. Hermanowski, M. L. Da Costa, H. Behling, Possible linkages of palaeofires in southeast Amazonia to a changing climate since the Last Glacial Maximum. Veg. Hist. Archaeobot. 24, 279–292 (2014). 47.D. M. Nelson, D. Verschuren, M. A. Urban, F. S. Hu, Long-term variability and rainfall control of savanna fire regimes in equatorial East Africa. Glob. Change Biol. 18, 3160–3170 (2012). 48.L. Scott, Climatic conditions in Southern Africa since the last glacial maximum, inferred from pollen analysis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 70, 345–353 (1989). 49.L. Scott, J. C. Vogel, Late Quaternary pollen profile from the Transvaal Highveld, South Africa. S. Afr. J. Sci. 79, 266–272 (1983). 50.M. A. Urban, D. M. Nelson, F. A. Street-Perrott, D. Verschuren, F. S. Hul, A late-Quaternary perspective, on atmospheric pCO2, climate, and fire as drivers of C4-grass abundance. Ecology 96, 642–653 (2015). 51.N. Shi, L. M. Dupont, H. J. Beug, R. Schneider, Vegetation and climate changes during the last 21000 years in S.W. Africa based on a marine pollen record. Veg. Hist. Archaeobot. 7, 127–140 (1998). 52.S. van der Kaars, X. Wang, P. Kershaw, F. Guichard, D. A. Setiabudi, A Late Quaternary palaeoecological record from the Banda Sea, Indonesia: Patterns of vegetation, climate and biomass burning in Indonesia and northern Australia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 155, 135–143 (2000). 53.S. Faurby, M. Davis, R. Ø. Pedersen, S. D. Schowanek, A. Antonelli, J.-C. Svenning, PHYLACINE 1.2: The Phylogenetic Atlas of Mammal Macroecology. Ecology 99, 2626 (2018). 54.J. Kingdon, D. Happold, T. Butynski, M. Hoffman, M. Happold, J. Kalina, Mammals of Africa, Volumes I-VI (Bloomsbury Publishing, 2013). 55.J. O. Abraham, G. P. Hempson, A. C. Staver, Drought-response strategies of savanna herbivores. Ecol. Evol. 9, 7047–7056 (2019). 56.S. C. Wang, C. R. Marshall, Estimating times of extinction in the fossil record. Biol. Lett. 12, 20150989 (2016). 57.J. T. Faith, T. A. Surovell, Synchronous extinction of North America’s Pleistocene mammals. Proc. Natl. Acad. Sci. U.S.A. 106, 20641–20645 (2009).A. D. Barnosky, E. L. Lindsey, N. A. Villavicencio, E. Bostelmann, E. A. Hadly, J. Wanket, C. R. Marshall, Variable impact of late-Quaternary megafaunal extinction in causing ecological state shifts in North and South America. Proc. Natl. Acad. Sci. U.S.A. 113, 856–861 (2016). 58.K. M. Wilson, M. G. Hill, Synthesis and assessment of the flat-headed peccary record in North America. Quat. Sci. Rev. 248, 106601 (2020). 59.M. T. Boulanger, R. L. Lyman, Northeastern North American Pleistocene megafauna chronologically overlapped minimally with Paleoindians. Quat. Sci. Rev. 85, 35–46 (2014). 60.J. M. Broughton, E. M. Weitzel, Population reconstructions for humans and megafauna suggest mixed causes for North American Pleistocene extinctions. Nat. Commun. 9, 5441 (2018). 61.A. D. Barnosky, E. L. Lindsey, Timing of Quaternary megafaunal extinction in South America in relation to human arrival and climate change. Quat. Int. 217, 10–29 (2010).J. T. Faith, Late Pleistocene and Holocene mammal extinctions on continental Africa. Earth Sci. Rev. 128, 105–121 (2014). 62.R. G. Klein, in Quaternary Extinctions: A Prehistoric Revolution, P. S. Martin, R. Klein, Eds. (Univ. Arizona Press, 1984), pp. 553–573. 63.R. G. Roberts, T. F. Flannery, L. K. Ayliffe, H. Yoshida, J. M. Olley, G. J. Prideaux, G. M. Laslett, A. Baynes, M. A. Smith, R. Jones, B. L. Smith, New ages for the last Australian megafauna: Continent-wide extinction about 46,000 years ago. Science 292, 1888–1892 (2001). 64.F. Saltré, M. Rodríguez-Rey, B. W. Brook, C. N. Johnson, C. S. M. Turney, J. Alroy, A. Cooper, N. Beeton, M. I. Bird, D. A. Fordham, R. Gillespie, S. Herrando-Pérez, Z. Jacobs, G. H. Miller, D. Nogués-Bravo, G. J. Prideaux, R. G. Roberts, C. J. A. Bradshaw, Climate change not to blame for late Quaternary megafauna extinctions in Australia. Nat. Commun. 7, 10511 (2016). 65.S. van der Kaars, G. H. Miller, C. S. M. Turney, E. J. Cook, D. Nürnberg, J. Schönfeld, A. P. Kershaw, S. J. Lehman, Humans rather than climate the primary cause of Pleistocene megafaunal extinction in Australia. Nat. Commun. 8, 14142 (2017). 66.S. Wroe, J. H. Field, M. Archer, D. K. Grayson, G. J. Price, J. Louys, J. T. Faith, G. E. Webb, I. Davidson, S. D. Mooney, Climate change frames debate over the extinction of megafauna in Sahul (Pleistocene Australia-New Guinea). Proc. Natl. Acad. Sci. U.S.A. 110, 8777–8781 (2013). 67.D. J. Meltzer, Pleistocene Overkill and North American Mammalian Extinctions. Annu. Rev. Anthropol. 44, 33–53 (2015). 68.A. J. Stuart, Late Quaternary megafaunal extinctions on the continents: A short review. Geol. J. 50, 338–363 (2015). 69.F. Saltré, J. Chadoeuf, K. J. Peters, M. C. McDowell, T. Friedrich, A. Timmermann, S. Ulm, C. J. A. Bradshaw, Climate-human interaction associated with southeast Australian megafauna extinction patterns. Nat. Commun. 10, 5311 (2019). 70.B. A. Leys, J. R. Marlon, C. Umbanhowar, B. Vannière, Global fire history of grassland biomes. Ecol. Evol. 8, 8831–8852 (2018). 71.G. Levavasseur, M. Vrac, D. M. Roche, D. Paillard, Statistical modelling of a new global potential vegetation distribution. Environ. Res. Lett. 7, 044019 (2012). 72.P. De Deckker, S. van der Kaars, S. Haberle, Q. Hua, J.-B. W. Stuut, The pollen record from marine core MD03-2607 from offshore Kangaroo Island spanning the last 125 ka; implications for vegetation changes across the Murray-Darling Basin. Aust. J. Earth Sci. 68, 928–951 (2021). 73.J. L. Gill, Ecological impacts of the late Quaternary megaherbivore extinctions. New Phytol. 201, 1163–1169 (2014). 74.A. C. Staver, W. J. Bond, W. D. Stock, S. J. van Rensburg, M. S. Waldram, Browsing and fire interact to suppress tree density in an African savanna. Ecol. Appl. 19, 1909–1919 (2009). 75.D. M. Kimuyu, R. L. Sensenig, C. Riginos, K. E. Veblen, T. P. Young, Native and domestic browsers and grazers reduce fuels, fire temperatures, and acacia ant mortality in an African savanna. Ecol. Appl. 24, 741–749 (2014). 76.J. L. Gill, J. W. Williams, S. T. Jackson, J. P. Donnelly, G. C. Schellinger, Climatic and megaherbivory controls on late-glacial vegetation dynamics: A new, high-resolution, multi-proxy record from Silver Lake, Ohio. Quat. Sci. Rev. 34, 66–80 (2012). 77.J. L. Commerford, K. K. McLauchlan, S. Sugita, Calibrating Vegetation Cover and Grassland Pollen Assemblages in the Flint Hills of Kansas, USA. Am. J. Plant Sci. 4, 1–10 (2013). 78.M. J. Power, J. R. Marlon, P. J. Bartlein, S. P. Harrison, Fire history and the global charcoal database: A new tool for hypothesis testing and data exploration. Palaeogeogr. Palaeoclimatol. Palaeoecol. 291, 52–59 (2010). 79.O. Blarquez, B. Vannière, J. R. Marlon, A.-L. Daniau, M. J. Power, S. Brewer, P. J. Bartlein, Paleofire: An R package to analyse sedimentary charcoal records from the Global Charcoal Database to reconstruct past biomass burning. Comput. Geosci. 72, 255–261 (2014). 80.M. J. Power, J. Marlon, N. Ortiz, P. J. Bartlein, S. P. Harrison, F. E. Mayle, A. Ballouche, R. H. W. Bradshaw, C. Carcaillet, C. Cordova, S. Mooney, P. I. Moreno, I. C. Prentice, K. Thonicke, W. Tinner, C. Whitlock, Y. Zhang, Y. Zhao, A. A. Ali, R. S. Anderson, R. Beer, H. Behling, C. Briles, K. J. Brown, A. Brunelle, M. Bush, P. Camill, G. Q. Chu, J. Clark, D. Colombaroli, S. Connor, A.-L. Daniau, M. Daniels, J. Dodson, E. Doughty, M. E. Edwards, W. Finsinger, D. Foster, J. Frechette, M.-J. Gaillard, D. G. Gavin, E. Gobet, S. Haberle, D. J. Hallett, P. Higuera, G. Hope, S. Horn, J. Inoue, P. Kaltenrieder, L. Kennedy, Z. C. Kong, C. Larsen, C. J. Long, J. Lynch, E. A. Lynch, M. McGlone, S. Meeks, S. Mensing, G. Meyer, T. Minckley, J. Mohr, D. M. Nelson, J. New, R. Newnham, R. Noti, W. Oswald, J. Pierce, P. J. H. Richard, C. Rowe, M. F. Sanchez Goñi, B. N. Shuman, H. Takahara, J. Toney, C. Turney, D. H. Urrego-Sanchez, C. Umbanhowar, M. Vandergoes, B. Vanniere, E. Vescovi, M. Walsh, X. Wang, N. Williams, J. Wilmshurst, J. H. Zhang, Changes in fire regimes since the last glacial maximum: An assessment based on a global synthesis and analysis of charcoal data. Clim. Dyn. 30, 887–907 (2008). 81.R. S. Vachula, N. Richter, Informing sedimentary charcoal-based fire reconstructions with a kinematic transport model. Holocene 28, 173–178 (2017). 82.J. R. Marlon, P. J. Bartlein, D. G. Gavin, C. J. Long, R. S. Anderson, C. E. Briles, K. J. Brown, D. Colombaroli, D. J. Hallett, M. J. Power, E. A. Scharf, M. K. Walsh, Long-term perspective on wildfires in the western USA. Proc. Natl. Acad. Sci. U.S.A. 109, E535–E543 (2012). 83.J. Marlon, P. J. Bartlein, C. Whitlock, Fire-fuel-climate linkages in the northwestern USA during the Holocene. Holocene 16, 1059–1071 (2006). 84.P. E. Higuera, B. N. Shuman, K. D. Wolf, Rocky Mountain subalpine forests now burning more than any time in recent millennia. Proc. Natl. Acad. Sci. U.S.A. 118, e2103135118 (2021). 85.K. Pearson, On lines and planes of closest fit to systems of points in space. Lond. Edinb. Dublin Philos. Mag. J. Sci. 2, 559–572 (1901). 86.H. Akaike, A new look at the statistical model identification. IEEE Trans. Automat. Contr. 19, 716–723 (1974). 87.Cattle Grazing Effects on Macroinvertebrates in an Oregon Mountain Stream; Rangeland Ecology and Management 60(3), 293-303, (1 May 2007) James D. McIver and Michael L. McInnis; https://doi.org/10.2111/1551-5028(2007)60[293:CGEOMI]2.0.CO;2

88. Influence of ruminant digestive processes on germination of ingested seeds; https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/v405sg230 89. Knopff KH, Knopff AA, Kortello A, Boyce MS. (2010). Cougar Kill Rate and Prey Composition in a Multiprey System. Journal of Wildlife Management 74(7):000–000; 2010; DOI: 10.2193/2009-314. Downloaded at: http://sci-northern.ab.ca/wp-content/uploads/2010/12/CougarKillRateandPreyComposition.pdf

90.French, Brett. (2010, December 9). Ferocious appetites: Study finds mountain lions may be eating more than previously believed. Billings Gazette. Retrieved from: http://billingsgazette.com/lifestyles/recreation/article_d9cf046b-2c47-539f-a267-972e72e570b6.html 91.Turner JW Jr and Morrison ML. (2001). Influence of Predation by Mountain Lions on Numbers and Survivorship of a Feral Horse Population. The Southwestern Naturalist. Vol. 46, No. 2 (Jun., 2001), pp. 183-190. Available at: http://www.jstor.org/discover/10.2307/3672527?uid=2129&uid=2&uid=70&uid=4&sid=21101018535373 92.Greger, Paul D. and Romney, Evan M. (1999). High foal mortality limits growth of a desert feral horse population in Nevada. Great Basin Naturalist: Vol. 59: No. 4, Article 10. Available at: https://scholarsarchive.byu.edu/gbn/vol59/iss4/10 93.French, Brett. (2004, August 12). Lions blamed for deaths of Pryor foals. Billings Gazette. Retrieved from: http://billingsgazette.com/news/state-and-regional/montana/lions-blamed-for-deaths-of-pryor-foals/article_ab0b2389-31a1-5110-8fb5-a21e9f753de7.htm

----------------------------------------------------

Recent Posts

See All
bottom of page